Activity Dynamics and Signal Representation in a Striatal Network Model with Distance-Dependent Connectivity
نویسندگان
چکیده
The striatum is the main input nucleus of the basal ganglia. Characterizing striatal activity dynamics is crucial to understanding mechanisms underlying action selection, initiation, and execution. Here, we studied the effects of spatial network connectivity on the spatiotemporal structure of striatal activity. We show that a striatal network with nonmonotonically changing distance-dependent connectivity (according to a gamma distribution) can exhibit a wide repertoire of spatiotemporal dynamics, ranging from spatially homogeneous, asynchronous-irregular (AI) activity to a state with stable, spatially localized activity bumps, as in "winner-take-all" (WTA) dynamics. Among these regimes, the unstable activity bumps [transition activity (TA)] regime closely resembles the experimentally observed spatiotemporal activity dynamics and neuronal assemblies in the striatum. In contrast, striatal networks with monotonically decreasing distance-dependent connectivity (in a Gaussian fashion) can exhibit only an AI state. Thus, given the observation of spatially compact neuronal clusters in the striatum, our model suggests that recurrent connectivity among striatal projection neurons should vary nonmonotonically. In brain disorders such as Parkinson's disease, increased cortical inputs and high striatal firing rates are associated with a reduction in stimulus sensitivity. Consistent with this, our model suggests that strong cortical inputs drive the striatum to a WTA state, leading to low stimulus sensitivity and high variability. In contrast, the AI and TA states show high stimulus sensitivity and reliability. Thus, based on these results, we propose that in a healthy state the striatum operates in a AI/TA state and that lack of dopamine pushes it into a WTA state.
منابع مشابه
Activity Dynamics and Signal Representation in Striatal Network Model with Distance-dependent Connectivity
Striatum is predominantly inhibitory and the main input nucleus of the basal ganglia. A functional characterization of its activity dynamics is crucial for understanding the mechanisms underlying phenomenon such as action selection and initiation. Here, we investigated the effects of the spatial connectivity structure on the emergence and maintenance of localized bumps of activity in large-scal...
متن کاملStriatal dopamine levels and changes in mitochondrial function following chronic 3-nitropropionic acid treatment in rats
An irreversible inhibitor of complex II in the mitochondria, 3-nitropropionic acid (3-NP), induces bilateral striatal lesions with many neuropathological features of Huntington’s disease (HD) in rats. It is widely used as a model of HD. Chronic systemic treatment of 3-NP for 4 days in rats (10, 15 and 20 mg/kg) caused a significant dose-dependent reduction in succinate dehydrogenase activity, w...
متن کاملStriatal dopamine levels and changes in mitochondrial function following chronic 3-nitropropionic acid treatment in rats
An irreversible inhibitor of complex II in the mitochondria, 3-nitropropionic acid (3-NP), induces bilateral striatal lesions with many neuropathological features of Huntington’s disease (HD) in rats. It is widely used as a model of HD. Chronic systemic treatment of 3-NP for 4 days in rats (10, 15 and 20 mg/kg) caused a significant dose-dependent reduction in succinate dehydrogenase activity, w...
متن کاملClassification of Right/Left Hand Motor Imagery by Effective Connectivity Based on Transfer Entropy in EEG Signal
The right and left hand Motor Imagery (MI) analysis based on the electroencephalogram (EEG) signal can directly link the central nervous system to a computer or a device. This study aims to identify a set of robust and nonlinear effective brain connectivity features quantified by transfer entropy (TE) to characterize the relationship between brain regions from EEG signals and create a hierarchi...
متن کاملConnectivity as a Measure of Power System Integrity
Measures of network structural integrity useful in the analysis and synthesis of power systems are discussed. Signal flow methodology is applied to derive an expression for the paths between sources and sinks in a power network. Connectivity and reach ability properties of the network are obtained using the minors of a modified connectivity matrix. Node-connectivity, branch connectivity and mix...
متن کامل